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We compute by direct Monte Carlo simulation the main critical exponents 
~, y, zJ4, and v and the effective coordination number p for the self-avoiding ran- 
dom walk in three dimensions on a cubic lattice. We find both hyperscaling 
relations dv = 2 - c~ and dv - 2A 4 + 7 = 0 satisfied in d = 3. 
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hyperscaling. 

1. I N T R O D U C T I O N  

The self-avoiding r a n d o m  walk (SAW) provides a nontrivial  test for the 
theory o f  critical phenomena.  First in t roduced as a model  of organic 
polymers,  it was shown by de Gennes (16) to occur  as the N ~ 0 limit of an 
O ( N )  field theory with (dO" dO) 2 interaction. The more  interesting features of 
the SAW arise in two and three dimensions, since the repulsion due to the 
self-avoidance condi t ion is s trong enough to yield a critical behavior  falling 
in a universality class different of  that  of the ordinary  walk. In four dimen- 
sions the self-repulsion is much weaker, for topological  reasons. The critical 
behavior  of  the SAW in d =  4 is expected to be essentially the same as for 
the ordinary r a n d o m  walk, (2~ though  some weak subdominant  corrections 
to the critical exponents  may occur. For  d>~ 5 the behavior  of  the SAW is 
conjectured to be trivial, and this has recently been proven by Slade (3~ for 
d sufficiently large. Moreover ,  Brydges and Spencer (1~ have proven 
triviality for the "weakly self-avoiding" walk in d>~ 5, i.e., a kind of  walk 
interpolating between ordinary  and strict self-avoiding. The "weakly self- 
avoiding" walk is shown to follow the same trajectories as the ordinary 
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walk (31) in two dimensions, but it follows trajectories not having a density 
with respect to the Wiener measure in three dimensions, as shown in 
Ref. 32. 3 

Many methods have been used and even invented to treat this 
problem. Without being exhaustive, let us mention (in a random order): 
rigorous methods for a random walk representation of field theory, (24"8'9) 
probabilistic methods, (2~22) duality arguments, (24) extrapolation of exact 
enumeration of short walks, (17) renormalization group techniques, (12'23) 
Monte Carlo simulations, (4'6'7) and supersymmetry. (26) 

Here we limit ourselves to the Monte Carlo simulation of a strict self- 
avoiding walk on a cubic lattice in three dimensions. The also nontrivial 
case of two-dimensional lattices is treated by Monte  Carlo simulation by 
various authors (7"14). The algorithm we use to generate the SAWs was 
introduced by Berretti and Sokal (7) and is the most efficient one as far as 
the autocorrelation time for long walks is concerned. 

Since this paper is the continuation of our previous work, (14'151 we 
only sketch in Section 2 the manner in which critical exponents arise in the 
problem of SAWs. Then we present in Section 3 the way we did our 
analysis in order to extract the critical exponents. Finally, in Section 4 we 
compare our results with previous ones in the literature obtained by 
different merhods. 

2. T H E  C R I T I C A L  E X P O N E N T S  

We use the algorithm introduced in Ref. 7 to generate SAWs. This 
algorithm is ergodic, satisfies the detailed balance condition, and hence 
generates SAWs in a grand canonical ensemble at a fixed value of the 
monomer  activity ft. The self avoidance condition is tested by using a 
200 x 200 x 200 table monitoring site occupation. 

We can tune the monomer  activity fl to obtain ensembles of walks 
with any value of the mean length ( N )  we wish. We chose fl = 0.21 such 
that the mean length is approximately 80. 

It  is desirable to obtain walks as long as possible because in the limit 
of infinite length, N ~  0% we have the following asymptotic properties: 

(i) The number  of walks CN of length N starting at the origin and 
ending anywhere on the lattice behaves as 

C N  ~ #NN'~ - 1 ( 1 ) 

3 We thank Jean-Frangois Le Gall for pointing out Ref. 32. 
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(ii) The number of walks CN(X ) of length N starting at the origin and 
ending at point x behaves as 

CN(X ) ~ [2NN • 2 (2) 

(iii) The end-to-end mean Euclidean distance ( r u )  for walks of 
given length N follows 

( rN)  ~ N  ~ (3) 

(iv) Finally, the number of intersecting pairs du of independent 
SAWs, both walks hakving the same length N and starting anywhere, 
behaves as 

dN~t2NN2A4+7 2 (4) 

In these relations # is a parameter, called the effective coordination num- 
ber, depending solely on the lattice and dimension. It has to be determined 
just like the critical exponents c~, 7, A4, and v. These exponents are not all 
independent, but are believed to obey hyperscaling relations, namely: 

d v =  2 - ~  (5) 

and 
d v -  2A4 + ,/=O (6) 

Relation (6) has a very controversial history. Using a high-temperature 
series expansion, Baker claimed that it fails for the Ising model in d~> 3. (s) 
Subsequent work on the Ising model 03'18'25'27'33) attested to the validity of 
(6) for d = 3 .  Aizenman (2) proved the hyperscaling equality dv - 2A 4 + 7 = 0 
for the two-dimensional Ising model; the same argument proves the 
inequality dv - 2A 4 + 7 ~< 0 for the two-dimensional SAW. Des Cloizeaux (11~ 
argued that (6) must fail if dv > 2 and Sokal (29) proved it. However, it is 
generally believed that dv > 2 occurs for d >  4 and only then. The rigorous 
proof of (6) for the SAW in d <  4 is still an open problem. 

3. S I M U L A T I O N  A N D  D E T E R M I N A T I O N  
OF THE CRIT ICAL EXPONENTS 

We did 103,520,000,000 Monte Carlo steps and data for the end-point 
coordinates and length of the walk were stored every 10  4 steps. In analyz- 
ing our data, the first 352,000 records--corresponding to 3,520,000,000 
Monte Carlo steps--were discarded in order to allow the system to ther- 
realize. Moreover, during the last fraction of the simulation the complete 
walks were saved and sorted by length. 

The simulation was performed on a CRAY-XMP computer at CRAY 
Research and the analysis on a NORSK DATA 570 at Lausanne. The 
mean time needed for one Monte Carlo step is about 0.51~sec. 
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We did an extensive study of the autocorrelation time r for various 
observables. This parameter plays an important role in computing the 
statistical errors and is crucial for the validity of the method for deter- 
m i n i n g  A 4 . 

The use of the autocorrelation time for a sequence of random variables 
presupposes that the truncated correlation function of this sequence decays 
exponentially, asymptotically for large time. For  instance, to determine 
for the random variable length N, we use the asymptotic exponential decay 
of the truncated correlation function GUN(t)= ( N i N i + , ) - ( N )  2. Using 
our data {Ni}, i =  1,..., n . . . .  we compute an unbiased estimator of the 
truncated correlation function GUN(t), namely GNU(t) given by 

1 nmax 

GuN(t) = ~ NiNi+,-- ( N )  2 (7) 
r / m a  x - -  t i ~ 1 

Applying the hypothesis of asymptotic exponential decay, we get for the 
autocorrelation time ~: 

t 
z ~ - ) i r a  ln[CNN(t)/dNN(O)] (8) 

__ 
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Plot of ~ as a function of t. The reach of the asymptot ic  plateau is evident. (See 
Ref. 8.) 
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In practice the numerically evaluated v is an increasing function of t that is 
expected to attain asymptotically a constant value before it disappears in 
the statistical noise. In Fig. 1 we present v as a function of t for the random 
variable N. 

Typically we get for the autocorrelation time v the value ~ ~ 2 x 10 4. 
It is expected that v ~ ~c<N>2; hence tc ~ 4, and the information about  

the walk of length N will be lost after 2v ~ 8<N> 2 steps. 

3.1. C o m p u t i n g  p and Exponents  V and v 

For  determining # and the exponents ~ and v we used the standard 
method. (7) Recall that relation (1) is used to determine two parameters,  # 
and 7; the most efficient method to compute them is a maximum likelihood 
fit. It is worth noting that it is possible to use a three-parameter least 
square fit; although it may give a more or less reliable estimate for #, 
the value of 7 can be completely wrong. For  a discussion of this effect, 
occurring in a similar situation, see Ref. 1. Hence we use a maximum likeli- 
hood fit on relation (1) to get # and 7 and a least square fit on relation (3) 
to compute v. We get 

# = 4.68323 • 0.00099 • 0.00017 

7 = 1.1756 -t- 0.0062 • 0.0080 

v = 0.5745 • 0.0087 _ 0.0056 

(The format of these results is: parameter  = central value _+ systematic 
error + statistical error. The total error provides 67% confidence inter- 
vals.) 

The systematic error is due to corrections to scaling, formulas (1) 
and (3) being only asymptotically true for N ~  ~ .  The fact that we use 
finite walks introduces corrections that are taken into account 
phenomenologically as explained in Refs. 7 and 14. The statisticl error is 
given by the standard theory of maximum likelihood fit. However, this 
naive error is multiplied by a factor (2~) in in the above results to take into 
account the correlation of the data. 

The reader can judge the asymptotic behavior in Fig. 2, which plots 
ln cu--Nln(~#) as a function of ln N, and Fig. 3, which gives ln<ru> 
versus In N. 

3.2. C o m p u t i n g  a 

The algorithm used for the simulation is not the most  appropriate  for 
the computat ion of the exponent ~, since it does not keep the end of the 
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Fig. 2. Plot o f f ( N ) = l n  c u - N l n ( / 3 / ~ )  as a function of N. 

walk fixed. A better algorithm for that particular exponent is the one 
introduced in Ref. 4. However,  the algorithm of Ref. 4 has a much greater 
autocorrelation time; hence it is desirable to extract even some poor infor- 
mation contained in our data. In the following we explain how the infor- 
mation is extracted from our data. We are aware that an independent 
simulation using another algorithm is needed for the determination of e. 
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The computation of the exponent c~ is simpler in the present case than 
that encountered in our previous two-dimensional case (14) since the 
statistics is better here and data are more independent. 

We only use the rotational symmetry of the problem to integrate over 
spheres of given radius. Namely, asymptotically for large N, CN(X) does not 
depend on x, but only on x = Ix[. Hence, the data are sorted according to 
the Euclidean end-to-end distance into CN(X). We use the value of # deter- 
mined by the maximum likelihood fit in relation (1) to extract by a least 
square fit the value of ~ from (2). Moreover, we impose a lower cutoff on 
the value of N to be sure that the asymptotic regime is attained. The fit is 
done for various values of x ranging from 1 to 10 and the mean is taken on 
the different ~'s computed. The most difficult part of this fit is the deter- 
mination of the lower cutoff for N. We did various least square fits for 
different values of the cutoff. We chose, for each value of x, the fit that 
minimizes the least square function divided by the population of the sample 
after cutoff. Figure 4 provides the plot of In CN(X )-Nln(fl#) versus In N 
for x = 3. We get (in the usual format) 

= 0.275 _+ 0.010 _+ 0.005 

For  the analysis of c~ it would be possible to integrate our data over x 
between Xmin and Xmax. This precedure does not affect the central value of c~ 
very significantly, provided one correctly chooses the lower cutoff; 
however, this choice becomes more and more subjective; so the total error 
does not improve. 
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Plot of g ( N )  = In c N ( x )  - N ln(fl#) versus In N for x = 3. 
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3.3. Computation of/~4 

The computation of Zl 4 w a s  sketched in Ref. 15. It goes as follows. 
Walks of equal length (stored in separate files for each length) are com- 
pared pairwise and the distinct translations of one walk with respet to the 
other that lead to an intersecting pair are counted exhaustively. (This 
procedure is carried out for walks of many different lengths.) One can 
easily see by combining relations (1) and (4) that the average number of 
translates of one walk that overlap with the other walk behaves as 

IN ~ N 2A4 - ~ (9) 

In order for the intersections in (9) to be meaningful, it is crucial to ensure 
the independence of walks in each file of given length. Some evidence of 
independence can be found in Fig. 5, where we plot the mean distance 
between reappearances of the same length, as a function of length. It turns 
out that this distance is of the order of 10 6 Monte Carlo steps, (This is 
because we sample once every 10 4 Monte Carlo steps. Hence it is very 
improbable to obtain two walks of exactly the same length in successive 
data points.) A least square fit on relation (9) (remark that IN is indepen- 

dent of / , )  gives 

2A4 - y = 1.7317 _+ 0.0074 -t- 0.0074 
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Fig. 5. Plot of the mean distance D,, of reappearance of walks of length N as a function of N. 
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Fig. 6. 
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Plot of In I N as a function of In N. The straight line corresponds to the case where 
hyperscaling is assumed correct. 

In Fig. 6 we exhibit the values of In I N v e r s u s  In N for the different lengths 
where intersections are tested. The straight line is the expected one if 
hyperscaling is valid. 

4. C O N C L U S I O N  

Table I compares the results of the present work with previous ones 
found in the literature. Our error bars are larger than the ones quoted in 
the literature. In order to lower them,simulations of much longer walks are 
needed, but, then, to get rid of the increase in the autocorrelation time, one 
has to perform much more Monte Carlo steps. We hope our results shed 
light on the long controversy about hyperscaling relations in three dimen- 
sions. Both of them are satisfied with good accuracy. 

For the first hyperscaling relation we find 

dv - 2 + c~ = -0 .0015 _ 0.028 • 0.017 

However, our value for c~ lies three standard deviations away from other 
quoted values for this parameter. We do not claim that our method to 
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compute c~ is the best one; the algorithm of Ref. 4 is much more 
appropriate. In order to judge if the validity found for the first hyperscaling 
relation is a matter of chance, a more accurate determination of v is 
needed, since the error bars of v are multiplied by the dimensionality of the 
space ( d =  3 in our case). 

For  the second hyperscaling relation we find 

dv - 2A 4 --b y = - 0 . 0 0 8 2  _+ 0.027 _+ 0.018 

The value 0 lies within less than a standard deviation of the statistical or 
systematic error from our central value. We think that the famous result of 
Baker (5) for the Ising model, which was at the origin of this controversy 
(dv - 2A 4 -t- ~/= 0.038 -t- 0.012), has very optimistic error bars. 

Moreover, the computation of 2 A 4 - 7  provides an indirect 
measurement of A4, which has never been done. 
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